English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16335/24215 (67%)
Visitors : 10814661      Online Users : 317
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nknu.edu.tw/ir/handle/987654321/6625


    題名: N型通道與P型通道駝峰式閘極場效電晶體之研究
    Investigation of N-Channel and P-Channel Camel-like Gate Field-Effect Transistors
    Authors: 戴盈芳
    Ying-Fang Dai
    貢獻者: 蔡榮輝
    Jung-Hui Tsai
    Keywords: 駝峰式閘極;P通道;N通道
    Camel-like Gate;P-Channel;N-Channel
    Date: 2010-07-01
    Issue Date: 2010-10-01 17:08:11 (UTC+8)
    Abstract: 本論文是利用低壓金屬有機化學氣相沉積法(LP-MOCVD)研製兩種異質結構駝峰式場效電晶體,使其具有佳的直流與高頻特性。
    首先,對於磷化銦鎵/砷化鎵駝峰式閘極擬晶性n型摻雜通道場效電晶體,設計n/p/n駝峰式閘極的結構,使元件具有非常高的位障,能有效增加閘極偏壓的工作範圍以及獲得較大的閘極導通電壓和汲-源極電流;其通道為砷化銦鎵材質,雖然砷化銦鎵與砷化鎵基板不匹配,而在臨界厚度內將砷化銦鎵擬晶於砷化鎵上,可取代傳統砷化鎵通道的缺點,改善了飽和速度以及遷移率問題,以增強載子的傳輸及元件的輸出特性。實驗結果顯示,在VGS = 0V時可獲得最大轉導值為96 mS/mm。當VGS = +2.5V,最大汲極輸出電流為393 mA/mm。而本元件閘極導通電壓可高達+2.0 V,逆向偏壓達-22.9 V,單位電流增益截止頻率與最大震盪頻率分別為18 GHz與27 GHz。
    另外,對於磷化銦鎵/砷化鎵/砷化銦鎵駝峰式閘極單原子摻雜p通道場效電晶體而言,由於磷化銦鎵為大能隙,可提高最大電場承受力及閘極崩潰電壓。而磷化銦鎵/砷化鎵界面間具有較大的導電帶及價電帶不連續值,有侷限載子的能力。且以p/n/p接面來形成大的位障來改善閘極導通電壓,使得元件具有高輸出電流及高線性度轉導。此外,在未?雜砷化銦鎵擬晶層內形成高?雜的P型單原子層通道進一步獲得較高轉導值、較高的載子移動率、較好的載子侷限。本元件結果顯示,在VGS = 0V時可獲得最大轉導值為33 mS/mm。當VGS = 0V,VDS = -16V時,最大汲極飽和電流為-139 mA/mm。本元件閘極導通電壓為-2.3 V,崩潰電壓為+11.5 V,單位電流增益截止頻率與最大震盪頻率分別為3.2 GHz與6.7 GHz。
    In this thesis, two newly designed heterostructure field-effect transistor (HFETs), grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD), have been fabricated and investigated.
    First, an InGaP/GaAs camel-like gate n-channel field-effect transistor with InGaAs Pseudomorphic doped-channel layer is fabricated and demonstrated. N/p/n camel-gate field effect transistor (CAMFET) is designed to achieve high gate turn-on voltage, potential barrier height and broad gate voltage swings. On the other hand, though InGaAs/GaAs material system is lattice mismatched, high mobility, high peak electron velocity, and low effective mass of electrons are provided by InGaAs channel. In addition, as compared with the GaAs material the InGaAs channel within the critical thickness enhances carrier confinement in the channel. According to the experimental results, the device shows a maximum transconductance of 96 mS/mm at VGS=0V, a maximum drain saturation current density of 393 mA/mm at VGS=+2.5V. Furthermore, the unity current gain cut-off frequency fT and maximum oscillation frequency fmax up to 18 and 27 GHz are obtained, respectively.
    Second, an InGaP/GaAs/InGaAs camel-like gate delta-doped p-channel field-effect transistor is fabricated and investigated. Due to the large energy gap of InGaP material, it could improve the performance of gate breakdown voltage, maximum electric field tolerance and good carrier confinement. For the use of p/n/p heterojunction in the gate region, the high potential barrier height could improve the gate turn-on voltage, drain current and device linearity. Besides, the use of δ-doped sheet as channel within InGaAs pseudomorphic layer can further achieve high transconductance, high carrier mobility, and good carrier confinement. According to the experimental results, it shows a transconductance of 33 mS/mm and a maximum drain saturation current density of -139 mA/mm VGS=0V. The gate turn on voltage and breakdown voltage of -2.3V and +11.5V, respectively. Furthermore, the unity current gain cut-off frequency fT and maximum oscillation frequency fmax up to 3.2 and 6.7 GHz are achieved, respectively.
    Appears in Collections:[電子工程學系] 博碩士論文
    [電子系] 蔡榮輝

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML838View/Open


    All items in NKNUIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback