English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16335/24215 (67%)
Visitors : 10344409      Online Users : 160
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    高師機構典藏 NKNUIR > 理學院 > 數學系 > 博碩士論文 >  Item 987654321/18659
    Please use this identifier to cite or link to this item: http://ir.nknu.edu.tw/ir/handle/987654321/18659

    題名: Gram-Schmidt數值解的探討
    Numerical study of Gram-Schmidt algorithms
    Authors: 陳如玨
    貢獻者: 陳振遠
    Jen-Yuan Chen
    Date: 2012-08-10
    Issue Date: 2013-04-19 11:49:09 (UTC+8)
    Abstract: Gram-Schmidt正交化已有相當一段歷史,一般教科書上會提到古典Gram-Schmidt正交化方法,但從計算觀點,該方法會出現正交後的向量不能完全正交的情況。修正後的Gram-Schmidt正交方法,可以改善這些問題,而Householder正交方法比這兩種來的更好。最近提出的兩步驟正交化方法,可以比的上Householder的方法。本論文就這四種方法做一些數值上的比較。
    The Gram-Schmidt orthogonalization (cgs) has been known for a long time. Many textbooks mention this method. However, in floating point arithmetic, cgs may produce a set of vectors that are far from orthogonal. For modified Gram-Schmidt orthogonalization, it may produce a more orthogonal set of vectors. The Householder orthogonalization can produce more orthogonal vectors than those of cgs and mgs. Recently, Two-step classical Gram-Schmidt orthogonalization has been proposed which is competitive to Householder method. We will compare these four methods by numerical results.
    Appears in Collections:[數學系] 博碩士論文
    [數學系] 陳振遠

    Files in This Item:

    File SizeFormat

    All items in NKNUIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback