English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16335/24215 (67%)
Visitors : 14030425      Online Users : 62
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nknu.edu.tw/ir/handle/987654321/10836

    題名: Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics
    Authors: 田倩蓉
    Chien-Jung Tien;D. C. Sigee;K. N. White
    貢獻者: 生物科技系
    Keywords: algae;copper adsorption;Freundlich isotherm;mucilage;phytoplankton
    Date: 2005-10
    Issue Date: 2010-11-11 16:56:34 (UTC+8)
    Abstract: Comparative studies were carried out on the adsorption of copper by a range of laboratory-cultured algae and freshwater phytoplankton samples. The level of surface mucilage associated with the cultured algae ranged from high (Anabaena spiroides, Eudorina elegans) to moderate (Anabaena cylindrica, Microcystis aeruginosa) to complete absence (Chlorella vulgaris, Asterionella formosa, Aulacoseira varians, Ceratium hirundinella). With laboratory cultures, the rapid uptake, EDTA release and quantitative similarity between living and dead (glutaraldehyde-fixed) algae were consistent with physical binding of Cu at the cell surface. The higher Cu adsorption per unit surface area and longer adsorption time of mucilaginous algae in the time-course study, and the relatively high level of Cu bound to mucilage found by X-ray microanalysis suggest that mucilage played an important role in metal binding. For all species examined, Cu adsorption kinetics (external Cu concentrations 1 to 1000 mg L−1) showed a clear fit to the Freundlich, but not the Langmuir isotherm, indicating a monolayer adsorption model with heterogenous binding sites. The Freundlich adsorption capacity constant (K f) was higher in mucilaginous (3.96–12.62) compared to nonmucilaginous (0.36–3.63) species, but binding intensity (Freundlich constant 1/n) did not differ between the two cell types. The results suggest that mucilaginous algal species may have potential as biosorbents for treatment of industrial effluents containing heavy metals. Investigation of the Cu adsorption behavior of four mixed phytoplankton samples also revealed a good fit to the Freundlich, but not the Langmuir, isotherm. Freundlich constants were in the range 2.3–3.2 for samples dominated by Chlorophyta, Bacillariophyta and Cyanophyta, but recorded a value of 7.4 in the sample dominated by Dinophyta. Comparison with data from laboratory monocultures suggested that the adsorption kinetics of mixed environmental phytoplankton samples cannot be predicted simply in terms of the major algal species.
    關聯: Journal of Applied Phycology / Volume 17, Issue 5, pp 379-389
    Appears in Collections:[生物科技學系] 期刊論文
    [生科系] 田倩蓉

    Files in This Item:

    File SizeFormat

    All items in NKNUIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback